You are here

Publications

Found 320 results
Sort by: [ Author (Asc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Abughalieh N, Le Borgne Y, Nowé A, Steenhaut K. Lifetime Optimization for Sensor Networks with Correlated Data Gathering. In: Altman E, Basar T, Chlamtac I Proceedings of the 7th IEEE Conference on Networked Sensing Systems. Proceedings of the 7th IEEE Conference on Networked Sensing Systems. ; 2010. p. 252 – 258.
Ampe EM, Hestir EL, Bresciani M, Salvadore E, Brando VE, Dekker A, Malthus TJ, Jansen M, Triest L, Batelaan O, et al. A wavelet approach for estimating chlorophyll-a from inland waters. IEEE Geoscience and Remote Sensing Letters. 2014:89-93.
Ampe EM, Raymaekers D, Hestir EL, Jansen M, Knaeps E, Batelaan O. A wavelet enhanced semi-analytical inversion model for water quality retrieval from high spectral resolution data for complex waters. IEEE Transactions on Geoscience and Remote Sensing [Internet]. 2015:869-882.
B
Baeten L, Reumers J, Tur V, c}ois Stricher F{\c, Lenaerts T, Serrano L, Rousseau F, Schymkowitz JWH. Reconstruction of protein backbones from the BriX collection of canonical protein fragments. PLoS Computational Biology [Internet]. 2008:e1000083.
Bejjani G, Caelen O, Bontempi G, Perrin L, Barvais L. Retrospective comparison of manual versus semi-automated propofol-remifentanil TCI Anaesthesia (abstract).
Ben Taieb S, J Hyndman R. A gradient boosting approach to the Kaggle load forecasting competition. International Journal of Forecasting [Internet]. 2013:1–19.
Ben Taieb S, J Hyndman R. Recursive and direct multi-step forecasting : the best of both worlds.
Ben Taieb S, Hyndman R. Boosting multi-step autoregressive forecasts.
Ben Taieb S, Bontempi G, Atiya A, Sorjamaa A. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert systems with applications. 2012:7067–7083.
Ben Taieb S, Bontempi G. Recursive multi-step time series forecasting by perturbing data.
Ben Taieb S. Machine learning strategies for multi-step-ahead time series forecasting.
Bersini H, Lenaerts T, Santos FC. Growing biological networks: beyond the gene-duplication model. Journal of Theoretical Biology [Internet]. 2006:488–505.
Bini DA, Dendievel S, Guy Latouche, Meini B. Computing the exponential of large block-triangular block-Toeplitz matrices encountered in fluid queues.
Bonnechere B, Wermenbol V, Dan B, Salvia P, Borgne Y-AL, Bontempi G, Vansummeren S, Sholukha V, Moiseev F, Jansen B, et al. Management and interpretation of medical data related to cerebral pasly: the ICT4 Rehab project. European journal of paediatric neurology. 2013:32.
Bontempi G, Birattari M, Meyer PE. Combining Lazy Learning, Racing and Subsampling for Effective Feature Selection.
Bontempi G. An optimal stopping strategy for online calibration in local search.
Bontempi G, Vaccaro A, Villacci D. A semi-physical modelling architecture for dynamic assessment of power components loading capability. IEE Proceedings of Generation Transmission and Distribution. 2004:533-542.
Bontempi G. Bandwidth selection for multiple-step-ahead time series prediction: beyond cross-validation.
Bontempi G. A Monte Carlo strategy for structured multiple-step-ahead time series prediction.
Bontempi G. A statistic criterion for reducing indeterminacy in linear causal modeling. ICPRAM 2103 Conference. 2013.
Bontempi G, Vaccaro A, Villacci D. Data driven calibration of Power Conductors Thermal Model for Overhead Lines overload protection. International Journal of Reliability and Safety. 2008:5-18.
Bontempi G, Bersini H, Birattari M. The local paradigm for modeling and control: From neuro-fuzzy to lazy learning. Fuzzy Sets and Systems. 2001:59-72.
Bontempi G, Haibe-Kains B, Desmedt C, Sotiriou C, Quackenbush J. Multiple-input multiple-output causal strategies for gene selection. BMC bioinformatics. 2011:458.
Bontempi G, Ben Taieb S, Le Borgne Y. Machine Learning Strategies for Time Series Forecasting.
Bontempi G, Ben Taieb S. Conditionally dependent strategies for multi-step-ahead prediction in local learning. International Journal of Forecasting. 2010.

Pages

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer