You are here

Publications

Found 32 results
Sort by: Author Title [ Type (Asc)] Year
Filters: Author is C. Desmedt  [Clear All Filters]
Book Chapter
Haibe-Kains B, Desmedt C, Loi S, Delorenzi M, Sotiriou C, Bontempi G. Computational Intelligence in Clinical Oncology : Lessons Learned from an Analysis of a Clinical Study. In: Applications of Computational Intelligence in Biology. Vol. 122. Applications of Computational Intelligence in Biology. ; 2008. p. 237-268.
Conference Paper
Sotiriou C, Wirapati P, Loi S, Desmedt C, Durbecq V, Harris A, Bergh J, Smeds J, Haibe-Kains B, Larsimont D, et al. Better characterization of estrogen receptor (ER) positive luminal subtypes using genomic grade. In: Breast Cancer Research and Treatment. Vol. 94. Breast Cancer Research and Treatment. ; 2005. p. S19.
Sotiriou C, Desmedt C, Haibe-Kains B, Harris A, Larsimont D, Buyse M, Wirapati P, Delorenzi M, Bontempi G, Piccart MJ, et al. Biological mechanisms that trigger breast cancer (BC) tumor progresion are molecular subtype dependent.
Sotiriou C, Wirapati P, Loi SM, Desmedt C, Durbecq V, Harris A, Bergh J, Smeds J, Haibe-Kains B, Larsimont D, et al. Breast tumours with intermediate histological grade can be reclassified into prognostically distinct groups by gene expression profiling. In: Breast Cancer Research and Treatment. Vol. 94. Breast Cancer Research and Treatment. ; 2005. p. S30.
Sotiriou C, Wirapati P, Loi S, Haibe-Kains B, Desmedt C, Tutt A, Ellis P, Buyse M, Delorenzi M, Piccart M, et al. Comprehensive analysis integrating both clinicopathological and gene expression data in more than 1500 samples: Proliferation captured by gene expression grade index appears to be the strongest prognostic factor in breast cancer (BC).
Sotiriou C, Haibe-Kains B, Desmedt C, Wirapati P, Durbecq V, Harris A, Larsimont D, Bontempi G, Buyse M, Delorenzi M, et al. Comprehensive molecular analysis of several prognostic signatures using molecular indices related to hallmarks of breast cancer: proliferation index appears to be the most significant component of all signatures.
Sotiriou C, C.Equeter, Ouriaghli EF, Haibe-Kains B, Durbecq V, Larsimont D, Igniatiadis M, Desmedt C, Willard-Gallo K, Piccart MJ, et al. Correlation of gene expression analysis of tumor-infiltrating CD4+ cells with immune function and survival according to different breast cancer (BC) molecular subtypes. In: of Oncology JC ASCO Annual Meeting Proceedings. Vol. 20. ASCO Annual Meeting Proceedings. ; 2008. p. .
Desmedt C, Loi SM, Haibe-Kains B, Soree A, Lallemand F, Durbecq V, Larsimont D, Tutt A, Ellis P, Gillett C, et al. Four genes by RT-PCR predicts distant relapse for women given adjuvant tamoxifen. In: Breast Cancer Research and Treatment. Vol. 94. Breast Cancer Research and Treatment. ; 2005. p. S129.
Desmedt C, Azambuja E, Di Leo A, Larsimont D, Durbecq V, Antoine D, Lallemand F, Haibe-Kains B, Cardoso F, Nogaret JM, et al. Gene expression profiling can predict pathological complete response (pCR) to anthracycline-monotherapy in estrogen-receptor (ER) negative breast cancer (BC) patients.
Loi S, Desmedt C, Haibe-Kains B, Lallemand F, Gillett C, Tutt A, Ryder K, Ellis P, Harris A, Smeds J, et al. Predicting relapse in estrogen receptor (ER) positive breast cancer (luminal) subgroups treated with adjuvant tamoxifen. In: Breast Cancer Research and Treatment. Vol. 94. Breast Cancer Research and Treatment. ; 2005. p. S129.
Loi S, Piccart M, Haibe-Kains B, Desmedt C, A.Harris, Bergh J, Ellis P, Miller L, Liu E, Sotiriou C, et al. Prediction of early distant relapses on tamoxifen in early- stage breast cancer (BC): a potential tool for adjuvant aromatase inhibitor (AI) tailoring.
Desmedt C, Piette F, Cardoso F, Wang Y, Loi S, Lallemand F, Klijn J, Haibe-Kains B, Viale G, Delorenzi M, et al. TRANSBIG multi-centre independent validation of the Rotterdam 76-gene prognostic signature for patients with node-negative breast cancer.
Durbecq V, Toussaint J, Haibe-Kains B, Desmedt C, Rouas G, Larsimont D, Buyse M, Bontempi G, Piccart MJ, Sotiriou C, et al. Transforming genomic grade index (GGI) into a user-friendly qRT-PCR tool which will assist clinicians and patients in optimizing treatment of early breast cancer (BC).
Journal Article
Li Y, Zou L, Li Q, Haibe-Kains B, Tian R, Li Y, Desmedt C, Sotiriou C, Szallasi Z, Iglehart JD, et al. Amplification of LAPTM4B and YWHAZ contributes to chemotherapy resistance and recurrence of breast cancer. Nature Medecine. 2010.
Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, Delorenzi M, Piccart M, Sotiriou C. Biological Processes Associated with Breast Cancer Clinical Outcome Depend on the Molecular Subtypes. Clin Cancer Res [Internet]. 2008:5158-5165.
Haibe-Kains B, Desmedt C, Sotiriou C, Bontempi G. A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all?. Bioinformatics [Internet]. 2008:2200-2208.
Haibe-Kains B, Desmedt C, Piette F, Buyse M, Cardoso F, van't Veer L, Piccart M, Bontempi G, Sotiriou C. Comparison of prognostic gene expression signatures for breast cancer. BMC Genomics [Internet]. 2008:394.
Loi S, Haibe-Kains B, Desmedt C, Lallemand F, Tutt A, Gillett C, Harris A, Bergh J, Foekens J, Klijn J, et al. Definition of clinically distinct molecular subtypes in estrogen receptor positive breast carcinomas through use of genomic grade. Journal of Clinical Oncology. 2007.
Juul N, Eklund AC, Li Q, Burrell RA, Gerlinger M, Valero V, Andreopoulou E, Esteva FJ, Symmans FW, Desmedt C, et al. Evaluation of an RNA interference screen-derived mitotic and ceramide pathway meta- gene in paclitaxel-treated primary ER-/PR-/ERBB2- breast cancer: a retrospective analysis of five clinical trials. Lancet Oncology. 2010.
Loi S, Haibe-Kains B, Desmedt C, Sotiriou C. Expression Profiling in Breast Carcinoma: New Insights on Old Prognostic Factors?. Journal of Clinical Oncology. 2007:4317-4318.
Haibe-Kains B, Desmedt C, Rothé F, Piccart M, Sotiriou C, Bontempi G. A fuzzy gene expression-based computational approach improves breast cancer prognostication. Genome Biology. 2010.
Desmedt C, Giobbie-Hurder A, Neven P, Paridaens R, Christiaens MR, Smeets A, Lallemand F, Haibe-Kains B, Viale G, Gelber R, et al. The Gene expression Grade Index: a potential predictor of relapse for endocrine-treated breast cancer patients in the BIG 1-98 trial. BMC Medical Genomics. 2009:40.
Sotiriou C, Wirapati P, Loi SM, Desmedt C, Durbecq V, Harris A, Bergh J, Smeds J, Haibe-Kains B, Larsimont D, et al. Gene expression profiling in breast cancer: Understanding the molecular basis of histologic grade to improve prognosis. Journal of National Cancer Institute. 2006:262-272.
Haibe-Kains B, Desmedt C, Di Leo A, Azambuja E, Larsimont D, Selleslags J, Delaloge S, Duhem C, Kains JP, Carly B, et al. Genome-wide gene expression profiling to predict resistance to anthracyclines in breast cancer patients. Genomics Data. 2013.
Liedtke C, Hatzis C, Symmans WF, Desmedt C, Haibe-Kains B, Valero V, Kuerer H, Hortobagyi GN, Piccart-Gebhart M, Sotiriou C, et al. Genomic Grade Index Is Associated With Response to Chemotherapy in Patients With Breast Cancer. J Clin Oncol. 2009:3185-3191.

Pages

Theme by Danetsoft and Danang Probo Sayekti inspired by Maksimer